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Broadband shock-associated noise is an important component of the overall noise
generated by modern airplanes. In this study, sound generated by the weakly nonlinear
interaction between linear instability waves and the shock-cell structure in supersonic
jets is investigated numerically in order to gain insight into the broadband shock-
noise problem. The model formulation decomposes the overall flow into a mean flow,
linear instability waves, the shock-cell structure and shock-noise. The mean flow is
obtained by solving RANS equations with a k − ε model. Locally parallel stability
equations are solved for the shock structure, and linear parabolized stability equations
are solved for the instability waves. Then, source terms representing the instability
wave/shock-cell interaction are assembled and the inhomogeneous linearized Euler
equations are solved for the shock-noise. Three cases are considered, a cold under-
expanded Mj =1.22 jet, a hot under-expanded Mj = 1.22 jet, and a cold over-expanded
Mj =1.36 jet.

Shock-noise computations are used to identify and understand significant trends
in peak sound amplitudes and radiation angles. The peak sound radiation angles are
explained well with the Mach wave model of Tam & Tanna (J. Sound Vib. Vol. 81,
1982, p. 337). The observed reduction of peak sound amplitudes with frequency
correlates well with the corresponding reduction of instability wave growth with
frequency. However, in order to account for variation of sound amplitude for different
azimuthal modes, the radial structure of the instability waves must be considered in
addition to streamwise growth. The effect of heating on the Mj = 1.22 jet is shown
to enhance the sound radiated due to the axisymmetric instability waves while the
other modes are relatively unaffected. Solutions to a Lilley–Goldstein equation show
that sound generated by ‘thermodynamic’ source terms is small relative to sound
from ‘momentum’ sources though heating does increase the relative importance
of the thermodynamic source. Furthermore, heating preferentially amplifies sound
associated with the axisymmetric modes owing to constructive interference between
sound from the momentum and thermodynamic sources. However, higher modes
show destructive interference between these two sources and are relatively unaffected
by heating.

1. Introduction
Modern airplane jet engines often operate at off-design conditions where the engine

exhaust velocity is supersonic, and a ‘mismatch’ exists between the flow and ambient
pressures. In such cases, a quasi-steady pattern of shock-waves forms in the interior
of the exhaust flow, and the interaction between jet turbulence and these shock-waves
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produces what is often referred to as ‘shock-noise’. Depending on the flow conditions,
shock-noise may be a significant component of the overall jet noise. In this
study, numerical solutions to a model problem are used to gain insight into the
generation and radiation of (broadband) shock-noise. Specifically, coherent structures
in supersonic turbulent jets are modelled as linear instability waves, and we consider
the sound generated by the interaction between these instability waves and the shock-
cell structure.

In addition to broadband shock-noise, supersonic jets produce two other types
of noise: (i) mixing noise and (ii) screech tones which we now briefly summarize.
Mixing noise is generated directly by the turbulent fluctuations in the jet. The study
of mixing noise extends back to the seminal work of Lighthill (1952), and it is still an
active area of research. Screech tones are generated by ‘resonant’ interactions involving
turbulent eddies, shock-waves and shock-noise. The basic mechanism of screech
generation was expounded by Powell (1953), and since then numerous theoretical,
experimental and computational studies have led to an increased understanding of
this phenomenon. See Raman (1999) for a review.

A review of supersonic jet noise and its three components is given by Tam (1995),
and a review of computational aeroacoustics is given by Colonius & Lele (2004). We
now narrow our focus to shock-noise. The first comprehensive study of broadband
shock-noise was conducted by Harper-Bourne & Fisher (1973). They identified many
significant features of shock-noise based on their experimental measurements. Perhaps
the most notable of these was the observation that the shock-noise intensity for jets
emitted from conical nozzles scaled as β4, where β2 = M2

j − 1 and Mj is the ‘fully-
expanded’ jet Mach number which is based on the jet velocity, Uj , and speed of sound,
aj . Drawing upon their measurements and physical reasoning, Harper-Bourne &
Fisher (1973) proposed a model which approximated the shock-noise sources as a
series of point sources located at shock–turbulence interaction locations. Of particular
importance was the observation that if the turbulence maintained its coherence as it
convected through multiple shock-cells, positive interference from the sources would
result in strong radiation in the upstream direction. Specifically, the predicted (and
observed) peak frequency was given by

fp =
Uc

L(1 − Mccos(ψ))
, (1.1)

where fp is the peak frequency, Uc is an appropriate convection velocity, L is the
shock-cell spacing, Mc is the convective Mach number, and ψ is the observation angle
measured relative to the downstream-directed jet axis. A general prediction method
for the sound spectra was also developed. A ‘source spectral density’ and correlation
coefficients were required as input and obtained from experiment. Harper-Bourne &
Fisher showed that predictions obtained from this model agreed with measurements
for a Mj = 1.41 jet.

Howe & Ffowcs Williams (1978) developed a theoretical shock-noise model where
the jet turbulence was represented by convecting axisymmetric vortex rings and
an acoustic analogy approach was used to obtain the sound field. Experiments by
Tanna (1977) provided further insight into the characteristics of shock-noise while
illustrating that the Harper-Bourne & Fisher (1973) model worked well over a
broad range of jet conditions. The experimental study of Norum & Seiner (1982a)
showed that a frequency scaled with the ambient speed of sound (rather than jet
velocity) gave the best correlation for the peak shock-noise frequency. They also used
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a source-localization technique to determine that the source location for a highly
under-expanded jet occurred between the sixth and tenth shock-cells.

Tam & Tanna (1982) provided a different perspective on the problem by modelling
turbulent eddies as instability waves. With this model, it was argued that shock-noise
should radiate strongly at upstream angles as Mach waves, and a frequency–directivity
relation equivalent to (1.1) was derived. They also generalized the Harper-Bourne &
Fisher (1973) β4 intensity scaling to converging–diverging nozzles. Tam (1987, 1990,
1991) built upon the approach of Tam & Tanna and developed a semi-empirical
shock-noise model which showed good agreement with experiment. Specifically, Tam
(1987) posed the problem as computing sound generated by the weakly nonlinear
interaction between linear instability waves and the shock-cell structure. He did not
compute direct solutions to this problem. Rather, he developed an approximate semi-
empirical solution using physical reasoning, scaling arguments and empirical fits to
experimental measurements.

There are several other works which are relevant to the shock-noise problem, and
the introduction of Lui (2003) gives a thorough overview of the literature.

The models of both Harper-Bourne & Fisher (1973) and Tam (1987) rely on
empirical results to model the jet turbulence. The Harper-Bourne & Fisher (1973)
representation of turbulence temporal dynamics is more sophisticated than the linear
stability model of Tam, and thus leads to a more substantial dependence on experi-
ment. However, this dependence is reduced through the use of scaling relations and
modelling simplifications which lead to a ‘universal source’ spectrum. The instability
wave model cannot produce sound spectra that are as ‘realistic’ as the Harper-Bourne
& Fisher (1973) model, but it does provide a path for more direct calculations of the
shock-noise problem.

In this work, we adopt Tam’s (1987) formulation and compute sound generated
by instability wave/shock-cell interaction. This approach requires the construction
of shock-noise sources and the calculation of the sound generated by these sources.
The computational results are used to understand how and why the source and
sound fields are modified as frequency, azimuthal mode number and jet conditions
are varied.

The next section reviews basic features of shock-noise in the context of a simple
model problem. Then, we present the governing equations, the numerical methods used
to solve these equations, and a test problem. This is followed by a survey of the linear
stability computations that have been performed. Section 5 is the core of this paper;
there, the results of shock-noise computations are presented and analysed. Trends
in peak radiation angles and amplitudes are explained and connections between the
instability waves, shock structure, sound sources and shock-noise are elucidated.

2. Background
A few basic features of shock-noise can be understood by examining a simple model

problem. Borrowing from Tam & Tanna (1982) and Tam (1987), we consider a source
which is the product of a propagating wave with a Gaussian envelope (approximating
an instability wave), h(t), and a neutral steady wave (approximating a mode of the
shock structure), g(s):

f (x, r, t) = h(t)g(s), (2.1a)

h(t) = A(r) exp(i(ktx − ω0t)) exp(−4 ln(2)(x/L)2), (2.1b)

g(s) = B(r) [exp(iksx) + exp(−iksx)], (2.1c)
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where x and r are the streamwise and transverse directions, respectively. A and B

are arbitrary functions representing the radial dependence of the source components;
their influence is ignored in the discussion which follows. The far-field pressure takes
the following form:

p ∼ C(ψ)
exp(i(ω0R−ω0t))

πR

√
πL2

4 ln(2)

{
exp

(
− (k∗

1L)2

16 ln(2)
[1 − cs1 cos(ψ)]2

)

+exp

(
− (k∗

2L)2

16 ln(2)
[1 − cs2 cos(ψ)]2

)}
, (2.2a)

k∗
1 = kt − ks; k∗

2 = kt + ks, (2.2b)

cs,j =
ω0

k∗
j

. (2.2c)

(All equations/parameters in this paper are non-dimensionalized with the fully
expanded jet diameter, D, ambient density, ρ∞, and the ambient speed of sound,
a∞, unless noted otherwise.) Equation (2.2) is in spherical coordinates, (R, ψ, φ), with
ψ measured from the downstream-oriented jet axis, and C(ψ) is included to account
for the arbitrary radial structure of the source and mean-flow effects. The ‘antenna’
terms of the form exp(−((k∗

jL)2/16 ln(2))[1 − cs,j cos(ψ)]2) are of primary interest. If
the ‘source phase velocity,’ cs,j , is supersonic with respect to the ambient speed of
sound (|cs,j | > 1), there is intense sound radiation at angles near the Mach angle,
ψM,j = cos−1(1/cs,j ). However, for the shock-noise problem, cs,2 is generally subsonic.
Furthermore, this term radiates sound primarily in the downstream direction where
shock-noise is not significant when compared to the mixing noise. So, it is the k∗

1

term which is important, and the formula for ψM,1 corresponds to the peak frequency
equation, (1.1). Thus, we have arrived at a significant conclusion from Tam & Tanna:
‘Sound due to shock-cell/instability wave interaction can take the form of Mach wave
radiation at an effective Mach angle defined by the instability wave frequency and
the difference between the instability wave and shock-cell mode wavenumbers.’

The final point of interest is the effect of the frequency on the directivity of
the sound. We can quantify this effect by using the semi-empirical models for the
Gaussian envelope, instability wavenumber and shock-cell wavelengths developed by
Tam (1987). Based on scaling arguments and fits to experimental data for the resulting
sound spectra, Tam arrived at the following function for the half-width:

L =
Mj (Tj/T∞)(1/2)

ω

[
α + βM2

j + γ Tj/T∞
]
, (2.3)

where α, β and γ are empirical constants. Tam modelled the instability wavenumber
as kt =ω/0.7Uj and used a modified vortex sheet solution for ks:

ks,1 = (1.596 − 0.1773Mj )ks,1,vortex sheet, (2.4a)

ks,2 = 1.1ks,2,vortex sheet, (2.4b)

ks,m = ks,m,vortex sheet, m = 3, 4, . . . , (2.4c)

where ksm is the mth shock-cell mode. Figure 1 shows the antenna function,
exp(−((k∗

1L)2/16 ln(2))[1 − cs,1 cos(ψ)]2), for an Mj =1.2, unheated jet with frequencies
St = 0.6 and St =0.9. The Strouhal number is defined as St = ω0D/2πUj . Tam’s model
is used to determine kt and ks,1. As the frequency increases, the sound peak shifts
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Figure 1. The effect of frequency on antenna function for the shock-cell mode/instability
wave interaction model problem. Flow parameters are for a Mj = 1.2 unheated jet; ,
St = 0.6; - - -, St = 0.9.
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Figure 2. The influence of higher shock-cell modes at higher frequencies on the antenna
function for the shock-cell mode/instability wave interaction model problem. Flow parameters
are for a Mj = 1.2 unheated jet; St = 1.05; , 1st shock mode; - - - , 2nd shock mode.

towards the downstream direction while the lobe width remains approximately the
same. If the frequency is increased further, the directivity will shift to larger inlet
angles, and eventually the shock-noise will be insignificant relative to the mixing noise.
Figure 2 shows directivities for St = 1.05 representing instability wave interaction
with both the first (ks,1) and second (ks,2) shock-cell modes. As demonstrated in
the figure, higher shock modes can make significant contributions to the sound
at higher frequencies and small inlet angles. This model problem illustrates many
of the qualitative aspects of shock-noise, and Tam (1987), using a moderately more
sophisticated approach, was able to obtain good quantitative results for sound spectra.
Later in this work, we explicitly compute the source terms and the resulting sound
without using the similarity assumptions and semi-empirical relations of Tam (1987).
This approach will allow us to study the nature of shock-noise generation and
radiation in much greater depth than existing models allow. Of course, the direct
applicability of our results is limited by modelling assumptions, so we will focus on
the qualitative features of the problem.

3. Formulation and methodology
We adopt a cylindrical coordinate system (x, r, φ) where the x-axis and jet axis

are the same. We will consider small-amplitude disturbances (shock-cells, instability
waves and shock-noise) on axisymmetric mean flows. The disturbances are expanded
as Fourier series in the azimuthal direction with mode number, m, and computations
are performed on x −r grids for each mode number of interest. We generally focus on
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the pressure asymptotically far from the jet nozzle in spherical coordinates (R, ψ, φ)
where x = R cos(ψ), r = R sin(ψ). We refer to this pressure as the ‘far-field sound’
which, for a given azimuthal mode, m, and frequency, ω, is defined as:

pff ≡ | lim
ωR → ∞

pm(R, ψ)|R. (3.1)

The far-field sound will usually be presented in terms of the ‘inlet angle’, θ = 180 − ψ .

3.1. Governing equations

Following Tam (1987), shock-noise is modelled as the product of a weakly nonlinear
interaction between linear instability waves and the shock-cell structure. Specifically,
we decompose the flow variables into:

f = F + f t + f s + f ′ + f other, (3.2)

where F is the steady specified (perfectly expanded) mean flow, f t represents insta-
bility waves, f s is the shock-cell structure, f ′ is the sound generated by the interaction
between f t and f s , and f other is defined to account for unrelated and higher-order
nonlinear terms. Assuming that f ′ is small, and neglecting dissipative effects in sound
generation and propagation, we define the shock-noise as a solution to the inhomoge-
neous linearized Euler equations:

∂ρ ′

∂t
+

∂m′
j

∂xj

= Sρ, (3.3a)

∂m′
i

∂t
+

∂

∂xj

(m′
iUj + m′

jUi − ρ ′Ui Uj ) +
∂p′

∂xi

= Sm,i, (3.3b)

∂e′

∂t
+

∂

∂xj

[u′
j (E + P ) + Uj (e

′ + p′)] = Se, (3.3c)

Sρ = − ∂

∂xj

[
ρ(t)u

(s)
j + ρ(s)u

(t)
j

]
, (3.4a)

Sm,i = − ∂

∂t

[
ρ(t)u

(s)
i + ρ(s)u

(t)
i

]
− ∂

∂xj

[
m

(t)
j u

(s)
i + m

(s)
j u

(t)
i +

(
ρ(t)u

(s)
j + ρ(s)u

(t)
j

)
Ui

]
, (3.4b)

Se = − ∂

∂t

[
Uj

(
ρ(t)u

(s)
j +ρ(s)u

(t)
j

)
+ρu

(t)
j u

(s)
j

]
− ∂

∂xj

[
u

(t)
j

(
e(s)+p(s)

)
+u

(s)
j

(
e(t)+p(t)

)]
. (3.4c)

In (3.3) and (3.4), u′
i is the velocity disturbance, ρ ′ is the density disturbance, p′

is the pressure disturbance, m′
i ≡ ρ ′Ui + ρu′

i is the momentum disturbance, and e′

is the total energy disturbance. A perfect gas equation of state closes the system of
equations,

e′ =
p′

γ − 1
+ ρ(Uju

′
j ) + 1

2
ρ ′(Uj Uj ). (3.5)

The shock-cell modes are taken to be axisymmetric and stationary. Thus, the frequency
and azimuthal mode number of an instability wave sets the frequency and mode
number of both the shock-noise sources (3.4) and the resulting sound.

Both the shock-cell structure and instability waves are computed as small
disturbances on the perfectly expanded mean flow. The perfectly expanded mean
flow is computed by solving RANS equations with the modified k − ε model of
Thies & Tam (1996). The instability waves, which represent coherent structures in
the fully turbulent flow, are defined as solutions to the linear parabolized stability
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equations (PSE). The shock-cell structure is determined by solving the locally-parallel
‘quasi-viscous’ linear stability equations following Tam, Jackson & Seiner (1985). A
clear shortcoming of this formulation is that the effect of the shock structure on
the evolution of the instability waves is neglected. This effect may be significant
for higher-frequency instability waves and for larger nozzle pressure ratios. Also,
as frequency is increased, disturbances are expected to become less coherent, and
an instability wave representation becomes less appropriate. For these reasons, we
constrain ourselves to shock-noise frequencies which are less than St ∼ 1.0.

In the following sections, we outline the methods used for the RANS, PSE, shock-
cell and LEE computations. Then, details of the shock-noise computations and a
test problem are presented. The full governing equations as well as several validation
cases can be found in Ray (2006).

3.2. Mean flow computation

The spreading mean flows used in the LEE and stability computations in this work
were obtained by solving the steady, axisymmetric, compressible boundary-layer
equations with modified k − ε equations (Wilcox 1993; Thies & Tam 1996). The Thies
model has been calibrated to provide good predictions of cold jet spreading rates over
a Mach number range of ∼ 0.4 − 2.2 which makes it well suited for our (Mj = 1.22
and Mj =1.36) shock-noise computations.

Second-order central differences are used for the radial derivatives, and a mapping
function clusters points in the shear layer. The solution is marched in the x-direction
with a second-order (Adams–Bashforth) forward difference. At each x position, the
solution is iterated until the maximum difference for each dependent variable between
iterations is less than some tolerance (usually 10−12). Linearization (with respect to
iteration) at iteration level k is implemented as:

ρUj

∂Ui

∂xj

= (ρUj )
k−1 ∂Ui

k

∂xj

. (3.6)

While more sophisticated iterative schemes will lead to faster convergence, we find
that this method is sufficiently efficient for our needs. An initialization process has
been implemented with two goals in mind: (i) to remove the influence of ‘transients’
associated with the choice of the initial profile, and (ii) to maintain the good agreement
with experiment obtained in the calculations of Thies & Tam (1996). A result of this
process is an ‘initialization region’ from x ∼ −1.6 to x = 0 over which the initially
laminar shear-layer spreading rate increases to its turbulent value. At the ‘nozzle
location’, x =0, the momentum thickness (see (3.7)) is δI /D ∼ 0.03. (There is no
physical nozzle in our computations; we normalize the instability waves and shock-
cell disturbances assuming that there is a nozzle at x =0.) The mean flow solution
in the initialization region, x < 0, is retained and used to initialize the shock-cell and
instability wave computations.

We use two forms of the momentum thickness to describe the jet development. The
first is the ‘incompressible planar’ momentum thickness defined as

δI =

∫ ∞

0

U − U∞

Ucl − U∞

(
1 − U − U∞

Ucl − U∞

)
dr. (3.7)

We also use the conventional momentum thickness,

δ =

∫ ∞

0

ρ

ρcl

U − U∞

Ucl − U∞

(
1 − U − U∞

Ucl − U∞

)
rdr. (3.8)



180 P. K. Ray and S. K. Lele

3.3. Shock-cell computations

The shock-cell disturbances are obtained by solving linear locally-parallel quasi-
viscous stability equations. They are quasi-viscous in the sense that viscous and
heat-conduction terms in the energy equation are neglected. This approach is taken
directly from Tam et al. (1985). A simple eddy-viscosity model is used to account
for shock-cell decay due to turbulent diffusion. A radially constant eddy viscosity
is specified based on a constant local Reynolds number, Uclδ

I /νt =95. Tam et al.
(1985) show that this model gives good agreement with the shock-cell pressure
measurements of Norum & Seiner (1982b) over a broad range of flow conditions.
The equations are solved at each streamwise position with a shooting method that
uses the re-orthonormalization procedure of Conte (1966).

3.4. Instability wave computation

The linear PSE can be derived by first linearizing the compressible Navier–Stokes
equations about a base flow, f , and assuming solutions of the form:

f (x, r, φ, t) = f̃ (r, x)exp{i[Φ(x) + mφ − ωt]}. (3.9)

Here, m and ω must be specified while the shape function, f̃ , and phase, Φ are
unknowns. Applying the slowly varying or ‘parabolizing’ assumption (e.g. Herbert
1997),

∂2f̃

∂x2
∼ 0,

1

Re

∂f̃

∂x
∼ 0,

∂2f

∂x2
∼ 0,

1

Re

∂f

∂x
∼ 0, (3.10)

we arrive at the final equations which are of the form:

L0Ψ + L1

∂Ψ

∂r
+ L2

∂2Ψ

∂r2
+ M

∂Ψ

∂x
= 0. (3.11a)

Ψ = [ρ̃ ũx ũr ũθ T̃ ]T , (3.11b)

where ρ̃, ũx , ũr , ũθ and T̃ are the shape functions for density, streamwise velocity,
radial velocity, azimuthal velocity and temperature, respectively. Full expressions for
the matrices, L0, L1, L2, M can be found in Ray (2006). The PSE system also contains
an eigenvalue, α =dΦ/dx.

Equation (3.11a) is marched downstream using a first-order implicit method in x

and fourth-order central differences in r . A grid-mapping is used to cluster points in
the shear layer. At each streamwise step, a discrete solution is sought which satisfies
a normalization condition: ∫ rmax

0

ρ

(
ũ∗

j

∂ũj

∂x

)
dr = 0. (3.12)

The normalization sets the distribution of energy between the shape function
and complex exponential in (3.9). Comparisons with computations which used the
‘compressible’ norm used by Hanifi, Schmid & Henningson (1996) indicate that the
full solution is practically insensitive to the choice of normalization function. The
eddy-viscosity model used in the shock-cell computations is used here as well with
Ret ≡ Uclδ

I /νt = 600. This value is roughly one order of magnitude larger than the
peak eddy viscosity used in the RANS computations which is in basic agreement
with the expectation that large-scale coherent disturbances exert a greater influence
on mean-flow spreading than small-scale incoherent motions. Increasing the eddy
viscosity reduces instability wave growth and shifts the amplitude peak towards the
nozzle. Tests indicate that the phase velocity is insensitive to changes in Ret (see Ray
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Figure 3. Schematic of the LEE computational domain.

2006, for a discussion of the effect of Ret on computed solutions). Apart from the use
of an eddy viscosity model, the PSE methodology used here similar to those used in
earlier studies which considered the linear stability of compressible free shear layers
(e.g. Balakumar 1998; Yen & Messersmith 1999; Malik & Chang 2000; Cheung &
Lele 2004).

PSE computations of flows which are not supersonic in the entire domain exhibit
numerical instability if the streamwise step size is ‘too small’. We have used the rule,
�x > 1/Re{α} (Li & Malik 1994), to guide our selection of step size. Aside from this
difficulty, the PSE approach appears to be well-suited for computing the convective
instabilities considered in this study (see pp. 253–254 of Herbert 1997, and references
therein for discussions on the validity and applicability of the PSE method).

The PSE solutions are computed on RANS mean flows which extend 1.6 diameters
upstream of the nominal nozzle location. The initialization procedure consists of three
stages. First, the inviscid parallel instability solution is obtained at the first streamwise
station, x = −1.6. Then, the full PSE equations are solved over 1.6 diameters with
the same initial velocity profile. This step removes transients associated with the
inviscid parallel solution. The final stage of the initialization starts at x = −1.6 with
the solution from the previous stage and solves the full PSE equations up to x = 0.
After initialization, the PSE are solved for x > 0 with the RANS mean flow. When
forming source terms for the LEE equations, the solution from the third initialization
stage is retained.

3.5. Numerical method for solution of linearized Euler equations

An explicit time-marching pseudospectral multidomain code has been developed
to solve (3.3). The two-step fourth-order low-dissipation low-dispersion low-storage
Runge–Kutta scheme of Stanescu & Habashi (1998) (see also Hu, Hussaini & Manthey
1996) is used for time advancement. (Solution of the LEE in the frequency domain
is a viable alternative. We chose to use a time domain approach for two reasons:
(i) several frequencies can be solved simultaneously and (ii) the same numerical
approach can be used for problems with non-harmonic sources, if desired.) The
overall computational domain is split into subdomains, and within each subdomain,
spatial derivatives are calculated with Chebyshev transforms. Along the boundaries,
damping layers and non-reflecting boundary conditions are implemented as shown in
figure 3. To compute the far-field sound from the LEE solution, the following steps
are taken:
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(a) The time history of pressure is collected along the cylindrical surface, r = r0,
where r0 lies far enough above the shear layer to neglect the effects of the radial mean
flow and mean flow gradients.

(b) The pressure signal is Fourier transformed in time and the component
corresponding to the forcing frequency is extracted.

(c) The pressure is then Fourier transformed in the streamwise direction (the
Fourier transforms are defined in equation (B 1b)) and matched to an appropriate
solution of the wave equation (a Hankel function).

(d) The inverse Fourier transform in the streamwise direction is computed with the
method of stationary phase giving the far-field sound.

A spectral exponential filter (Majda, McDonough & Osher 1978; Gottlieb &
Hesthaven 2001) is applied in the streamwise and radial directions at each time
substep of the LEE computation. Damping layers are applied at the inflow, outflow
and top of the computational domain to reduce spurious reflection. The computational
grid (in both x and r) consists of the Gauss–Lobatto points. These points are clustered
near the domain boundaries. However, for the shock-noise problems of interest, the
greatest demands on resolution are expected to occur in the shear layer and away from
the radial and streamwise boundaries (there are damping layers at the streamwise
boundaries which make near-boundary clustering particularly undesirable). For these
reasons, we have used two mapping functions to map the computational (Gauss–
Lobatto) grid to a physical grid with a more efficient distribution of points. One must
be careful, however, when using mappings with Chebyshev methods; if some clustering
near the boundaries is not retained, the accuracy of the Chebyshev representation
deteriorates. For the inner subdomain, we use the Bayliss & Turkel (1992) mapping
for the radial direction. The Kosloff & Tal-ezer (1993) mapping is used for the outer
subdomain radial mapping and streamwise mapping. ‘Information’ is transferred
between the subdomains using characteristics-based patching at the subdomain
interface following Hesthaven (1997). See Appendix A for further details on the
numerical method.

3.6. Instability wave/shock-cell interaction: computational
setup and a test case

The instability wave/shock-cell interaction problem requires the assembly of nonlinear
source terms (figure 4). We now present details of this assembly procedure and then
proceed to a test problem. In general, the RANS mean flow is computed on two
different x-grids – the non-uniform grid used by the LEE solver (at x = − 1, 5, 11, the
step sizes are �x =0.050, 0.053, 0.048 – see Appendix A for further details on the
LEE grids) and the uniform grid used by the PSE code. A streamwise step size of
0.025D is used in the PSE computations for St � 0.6, and 0.05D is used for St < 0.6.
For all computations presented here, the radial domain is 10 diameters. The RANS
code uses 1600 grid points in the radial direction and the PSE code uses 400 points
(a grid mapping clusters points in and around the shear layer). Since the RANS,
PSE and LEE radial grids are all different (the shock-cell disturbances are solved
directly on the LEE grid), the RANS data must be interpolated to the PSE and LEE
grids, and the PSE solution must be interpolated to the LEE grid. Interpolation of
the RANS results is a two-stage process. Cubic spline interpolation gives the mean
flow on the LEE grid. A spectral filter is then applied to smooth the front which the
k − ε model produces at the inner edge of the shear layer. This is simply a ‘safety’
measure and has little effect on the gross mean flow properties or the shock-noise.
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Figure 4. Overview of methods for instability wave/shock-cell interaction computations.
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Figure 5. Contours of mean streamwise velocity for the Mj =1.22 cold jet.

After filtering, the mean flow is spectrally interpolated onto the PSE grid. Cubic
spline interpolation is used to interpolate the PSE solution onto the LEE grid.

The LEE domain for shock-noise computations extends several diameters upstream
of the nominal nozzle location so smooth specifications of the mean flow, shock-cells,
and instability waves are required in this region. The mean flow computation starts
at x ∼ −1.6 and the flow is extended upstream with a parallel flow assumption and
damped to ambient conditions with a tanh function,

Ux,LEE = Ux,RANS − (Ux,RANS − M∞)
(

1
2
(1 − tanh(4(x + 0.5)))

)
. (3.13)

Contours of the mean axial velocity used by the LEE code for the Mj = 1.22 cold
jet are shown in figure 5. Physically, the shock structure should start at x =0 and
be zero upstream of this point. However, including this strong discontinuity places
an extreme burden on the numerical method, so the shock structure is damped in
a manner similar to the mean flow. The solution is extended upstream of x = −1.6
(recall that both the shock-cell and PSE computations begin at x ∼ −1.6) with a
neutral stability assumption and rapidly damped upstream of x =0 with a damping
function similar to the one used for the mean flow,

fsc,LEE = fsc

{
1
2
(1 + tanh[4(x + 0.5)])

}
. (3.14)
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Figure 6. Shock-noise test case, Mj = 1.22,m= 0. Curves correspond to LEE solutions and
symbols represent Rayleigh equation solutions. , St = 0.6 (LEE); - - -, St = 0.75 (LEE);
–.–, St = 0.9 (LEE).

The upstream extension of the PSE solution is implemented by taking the shape
function and eigenvalue for x < −1.6 to be equal to their values at x = −1.6. Thus,
the growth rate at x = −1.6 determines the rate at which the instability wave decays
as it is extended from x = −1.6 to x = −6.0. At x = −1.6, the shear layer is thin, and
the growth rate is large, so, the upstream extension of the instability wave decays
away quickly. We normalize all instability waves used in shock-noise computations
so that the integrated disturbance kinetic energy at x = 0 is one.

All computations were performed on a linux cluster consisting of 24 AMD Opteron
(1.6 GHz) processors. Single-processor mean flow and shock-mode calculations
typically required 10–15 min and 2–3 h, respectively. PSE calculations for a single
azimuthal mode and several frequencies were carried out in parallel with one frequency
per processor. Typical calculations required 4–5 h. LEE calculations were carried out
on 8 processors and a computation of an azimuthal mode required 2–4 days, though
the coarse-grid approach discussed in § 5.2.2 reduces this time considerably.

We have undertaken several validation problems to verify that the LEE code
performs well for acoustic source problems (Ray 2006). Here, we will present just
one of these tests – a problem which is very similar to the full shock-noise problem.
The full problem is given by (3.3) and (3.4) with a spreading axisymmetric base
flow. If we replace the base flow on the left-hand side of (3.3) with a parallel (tanh)
base flow, the equations can be reduced to the inhomogeneous Rayleigh equation
(see Appendix B). We can then compare LEE and Rayleigh solutions which will
simultaneously test the LEE and Rayleigh codes. RANS mean flows, PSE-generated
instability waves, and the first shock-cell mode go into the right-hand sides of the
equations. The only neglected effect is the effect of mean flow spreading on the sound
radiation. Most of the numerical parameters used in both these tests and the full
shock-noise computations presented later have been included in Appendix A.

The test case is a Mj =1.22 cold jet with shock-noise sources containing axisym-
metric (m =0) instability waves at frequencies St =0.6, 0.75, 0.9. Figure 6 shows the
far-field pressure amplitudes. Agreement between solution methods is very good;
however, there is some error for the St = 0.6 case at shallow angles. In this and other
test cases not shown here, deficiencies in the far-field sound computation method
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Md Mj

Uj

a∞

Tj

T∞

Tr

T∞
St

ωD

a∞

1.00 1.22 1.07 0.77 1.00 0.60, 0.75, 0.90 4.04, 5.05, 6.06
1.00 1.22 1.59 1.70 2.20 0.60, 0.75, 0.90 5.99, 7.49, 8.98
1.50 1.36 1.19 0.77 1.05 0.54, 0.67, 0.81 4.04, 5.05, 6.06

Table 1. Flow and source parameters for shock-noise computations. Md is the ‘design Mach
number’ (the jet Mach number at the nozzle exit). Tj and Tr are the jet static and stagnation
temperatures, respectively.

produce tangible errors at shallow inlet angles. For this reason, in the discussion of
shock-noise that follows, only sound radiated at angles 30 <θ < 150 will be considered.

The shock-noise sources also excite instability waves which propagate downstream.
These waves will generate sound directly. However, this sound (which is also a type of
‘shock-noise’) will tend to radiate at shallow downstream angles, and it is not expected
to be significant relative to the shock-noise at normal and upstream angles. The test
case provides a partial validation of this expectation – the LEE result contains sound
associated with excited instability waves while the Rayleigh equation solution does
not.

4. Results: mean flow, shock-cells and instability waves
4.1. Overview of computations

Computations for three flows will be discussed. We take an Mj = 1.22, Md = 1.0 cold
jet as a ‘base case’. The two other flows are higher Mach number (same temperature
ratio as base case) and heated (same Mach number as base case). Furthermore, the
higher-Mach-number case is over-expanded with Md =1.5. The Mach numbers for
the over-expanded case were chosen primarily to satisfy two criteria: (i) the pressure
mismatch should be sufficiently small to justify the linear shock-cell assumption, and
(ii) the jet Mach number should be be fairly close to the base case Mach number.
The second condition was applied because a large difference in jet Mach numbers
would have required modifications to the mean flow initialization procedure and
computational domain size – complications which we wished to avoid. Each flow also
contained a small free-stream velocity, M∞ = 0.01.

For each flow, three azimuthal mode numbers (m =0, m =1, m =2) are solved and
three frequencies per azimuthal mode number are computed. The frequencies for
the two Mj = 1.22 jets are St =0.6, 0.75, 0.9. The acoustic frequencies of the base
and Mj = 1.36 cases are the same, ωD/a∞ = 4.04, 5.05, 6.06. Experiments indicate
that broadband shock-noise is significant at these frequencies. A single computation
consists of all frequencies at a single azimuthal mode number, so nine computations
were required for these three flows. An overview of the flow parameters is given in
table 1. Before examining the shock-noise results, we first briefly summarize the mean
flow and shock-structure computations, and examine pertinent characteristics of the
linear instability waves.

4.2. Mean flow and shock-structure

The centreline axial velocities and momentum thicknesses for the three RANS-
computed mean flows are shown in figure 7. We see that the Mj =1.36 jet spreads at
a slightly slower rate than the base case, illustrating the effect of compressibility. The
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Figure 7. Mean flow (a) centreline velocities and (b) momentum thicknesses, δ.
, Mj = 1.22, cold; - - -, Mj =1.36, cold; -.-, Mj = 1.22, hot.

0 2 4 6 8 10
0.5

1.0

1.5
(a) (b)

p
p∞

x/D
0 2 4 6 8 10

0.8

0.9

1.0

1.1

x/D

Figure 8. Shock-cell pressure, (a) Mj = 1.22, Md = 1.0, r/D = 0 (b) Mj = 1.36, Md = 1.5,
r/D =0.3, cold; computations contain first shock-cell mode only. , Norum & Seiner
(1982b); - - -, computation.

hot Mj =1.22 mean flow spreading rate is substantially greater than the base flow
spreading rate which qualitatively agrees with many observations of hot jet spreading
rates.

Tam et al. (1985) showed that the jet shock-cell structure could be represented well
by a sum of the zero-frequency eigenmodes of the fully-expanded mean flow. Here,
following the same approach, but only including the first eigenmode, we compare
computations for the two cold jet cases and the experimental pressure measurements
of Norum & Seiner (1982b). Figure 8(a) shows a comparison between the first shock-
cell mode and experiment. Although the agreement in phase is good, there is an
over-prediction in the shock-amplitude. It is not clear at this time what the cause for
this discrepancy is. Both Tam et al. (1985) and our computations show a similar but
smaller-magnitude error for a Mj = 1.17, Md =1.0 jet (not shown here, see Ray 2006).
Possible explanations include nonlinear effects or the effect of mean flow spreading –
we have followed Tam et al.’s recommendation and neglected the non-parallel flow
correction which is produced by the multiple-scale analysis. The agreement between
computation and experiment is better for the Mj =1.36 case (figure 8b). There is some
disagreement downstream of the end of the potential core where the experimental
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Figure 9. Computed shock-cell pressure at r/D = 0, Mj = 1.22, Md = 1.0, first shock-cell
mode with temperature ratio: , cold; - - -, Tj/T∞ =1.7.

shock-cells decay rapidly. This feature, which is believed to be sensitive to the
presence/strength of screech, is not reproduced by the computations. Figure 9
compares the centreline pressure for the first shock-cell mode for the cold and
hot Mj = 1.22 jets. We see that heating has little effect on the shock structure which
is in qualitative agreement with experiments (Wishart 1995). While there are tangible
discrepancies between computation and experiment, the goal of this investigation is
not to mimic particular experiments. Rather, we simply require physically reasonable
mean flows and shock-cell solutions, and we believe that the results shown here satisfy
this requirement.

We have not shown the higher shock-cell modes because only the first shock-cell
mode is included in our shock-noise computations. We justify this simplification in
§ 5.2.1.

4.3. Instability waves

This section presents results from linear stability computations over a range of
frequencies and azimuthal wavenumbers. We focus on the streamwise evolution of
the instability wave energy and phase velocity. Frequencies which are relevant to the
shock-noise problem (0.5 � St � 1.0) are investigated, but we do not ignore lower
frequencies. These modes tend to show the largest growth and are related to the
generation of low-frequency mixing noise.

The integrated disturbance kinetic energy is used to characterize the instability
wave amplitude,

K(x) =

∫
ρ(uju

∗
j )

2
r dr. (4.1)

We compute the phase velocity using the PSE eigenvalue: cph = ω/αr . Figure 10(a)
shows the instability wave energy for the cold Mj = 1.22 jet for frequencies,
St =0.3, 0.6, 0.9 and azimuthal mode numbers, m = 0, 1, 2. The energy for each mode
is normalized to be unity at x = 0, so figure 10 shows the energy growth relative
to the energy at the nozzle. As frequency increases, energy growth decreases and
the streamwise location of peak energy moves upstream. Also, m =1 is the most
amplified mode for all of the frequencies and azimuthal modes; however, the highest
frequency is considerably more ‘three-dimensional’ than the lowest. In general, as
frequency increases, energy is distributed more evenly across the azimuthal modes.
Higher azimuthal modes, m > 2, show a regular reduction in growth as mode number
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Figure 10. Instability wave (a) energy growth and (b) phase velocity on a Mj = 1.22 cold jet.
, m= 0; - - - m= 1; · , m= 2.
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Figure 11. Instability wave energy growth on a Mj = 1.22 cold jet, higher azimuthal mode
numbers. , m= 2; - - -, m= 3; · , m= 4.

is increased (figure 11) and we do not consider them further. The phase velocity
cph/Uj is shown in figure 10(b) for m =0, 1, 2, St = 0.3, 0.6, 0.9. The phase velocities
for the lowest frequency, St =0.3 range between ∼ 0.6 and ∼ 0.75 in agreement
with experimental measurements of large-scale structure convection velocities. The
higher frequencies for x/D > 1 tend to have higher phase velocities. Also, higher
azimuthal mode numbers tend to have lower phase velocities. Using Tam & Tanna’s
‘Mach wave’ reasoning, instability waves with higher phase velocities are expected to
produce shock-noise which radiates at larger inlet angles.

The Mj = 1.36 cold jet instability waves are similar to the Mj = 1.22 case as can
be seen by comparing figures 10 and 12. Figure 13 displays the energy and phase
velocities for the hot Mj = 1.22 jet instability waves. Most of the basic trends remain
the same as in the previous two cases though there are some notable differences.
The energy of the hot jet instabilities grows downstream of the end of the potential
core (x > 5) whereas the cold cases show regular decay. This growth is due to strong
Mach waves which, when radiating at shallow angles, can contribute significantly to
the integrated energy (equation (4.1)) at downstream locations where the instability
waves are decaying in the jet shear layer. Since our primary interest is instability
amplitude within the jet, it is desirable to remove the influence of the Mach waves;
however, there does not seem to be a rigorous method for accomplishing this.
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Figure 12. Instability wave (a) energy growth and (b) phase velocity on a Mj = 1.36 cold jet.
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Figure 13. Hot jet instability wave (a) energy growth and (b) phase velocity, Mj = 1.22.
, m= 0; - - -, m= 1; · m= 2.

We use two simple modifications to the definition of the integrated kinetic energy
(equation (4.1)), the energy norm used in the PSE numerical method (equation (3.12))
was not modified): (i) the r-weighting from the energy integral is removed and (ii) the
upper limit of integration is reduced to r/D = 2.0; with these changes, the ‘modified
disturbance kinetic energy’, K∗ for the hot jet is shown in figure 14(a). We see that
the basic behaviour is now in agreement with the cold computations. Figure 14(b)
compares the cold and hot instability wave energies for m =0, 1 and St =0.3, 0.9. A
trend can be seen – at the lower frequency, the cold jet instabilities are considerably
more energetic whereas at the higher frequency, the energies are similar. To gain a
fuller view of the effect of jet temperature, we have also computed St =0.6 instability
waves with Tj/T∞ = 2.7. The modified kinetic energies and phase velocities are shown
in figure 15. For m =1 and m =2 (not shown), as the temperature ratio is increased,
peak energy increases, while the axisymmetric mode shows an initial decrease in
energy followed by an increase. Such ‘irregular’ behaviour at intermediate frequencies
can be anticipated from figure 14. The phase velocity (relative to the jet velocity)
decreases as temperature increases downstream of x ∼ 2. However, caution should be
used in applying this result, given the artificial nature of the energy measure used.
Further study on the effect of heating on the instability waves is required.
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To a large extent, the radial structure of instability waves is dictated by the symmetry
conditions and near-centreline behaviour of a given azimuthal mode, m. Only the first
two azimuthal modes possess disturbances which are non-zero at the centreline. The
streamwise velocity and thermodynamic variables can be finite at r = 0 for m =0 while
the radial and azimuthal velocities may be non-zero for m =1. All other quantities
must go to zero at the centreline. Thus, for m > 1, we expect instability waves to
be confined in the jet shear layer, whereas penetration of the disturbances into the
jet core is possible for m =0, 1. This behaviour can be illustrated by introducing
and examining the quantity, r∞(x), which we define as the radial position at which
the disturbance kinetic energy is maximum. Figure 16 plots r∞ for the cold and hot
Mj = 1.22 cases. The m =1 and m = 2 curves generally stay confined to the shear
layer, gradually moving inward as the shear layer spreads. The axisymmetric mode
displays considerably more complicated behaviour. The m =0 maximum ‘jumps’ from
the centre of the shear layer to the inner edge of the shear layer which it then follows
to the end of the potential core. A more complete view of this behaviour is presented
in figure 17 which shows radial profiles of ux , ur and ρ, at three streamwise locations,
x = 0.5, 2, 6, and three azimuthal mode numbers, m =0, 1, 2. Only two of the nine
plots show significant penetration into the jet core: (a) ux, m =0 and (e) ur, m =1
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which is in agreement with the discussion of near-centreline behaviour of Fourier
modes above.

Clearly, instability waves which peak closer to the jet centreline will interact more
vigorously with the jet shock-cell structure. Thus, even though the helical (m = 1)
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instability waves tend to have larger growth rates than the axisymmetric modes, the
axisymmetric modes may generate more shock-noise.

5. Shock-noise
Earlier sections discussed computations of jet mean flows, shock-cell structure and
instability waves. Now, these elements are used together to compute the sound
generated by the (weak) interaction between linear instability waves and the shock-
cell structure in three supersonic jets.

Our analysis will focus on two aspects of the sound fields: (i) directivity and
(ii) amplitude. In examining the directivity, we attempt to isolate the factors which
determine the peak radiation angles. The analysis of the sound amplitudes will
investigate what features of the sources are most significant in determining the
relative peak sound amplitudes. Properties of the mean flows, instability waves, and
shock-cell structures are connected to the trends observed in the sound fields.

5.1. The acoustic field of the Mj = 1.22 cold jet

We begin with an examination of the sound fields for the Mj = 1.22, Md = 1.0 cold
jet. Figure 18(a) is a composite plot which shows instantaneous pressure contours
for the axisymmetric (m = 0) mode along with contours of mean streamwise velocity
and shock-cell pressure. Sound radiating away from the jet in the upstream direction
can be clearly observed. The source consists of contributions from three instability
waves at frequencies St =0.6, 0.75, 0.9, and a clearer picture of the sound field is
obtained by extracting the Fourier components of the pressure field at these three
forcing frequencies. These fields are shown in figure 18(b–d), and they illustrate a
well-known feature of shock-noise: as inlet angle increases, the peak sound frequency
also increases. Another view of the radiated sound is obtained by extrapolating the
near-field pressure to the far field. Figure 19(a) shows the far-field pressure for the
base case, m =0. Sound at higher frequencies is radiated at larger inlet angles with
smaller amplitudes. Identical trends are observed for m =1 and m =2 (figure 19b, c).
Also shown in the figures as symbols are Rayleigh equation (parallel mean flow)
solutions which neglect the effect of mean flow spreading on the sound propagation
(the mean flow at x = x∗ is used, where x∗ is defined in § 5.5). For most of the cases,
the Rayleigh solutions provide a good estimate of the full solution. This comparison
is useful for several reasons. First, the Rayleigh equation can be solved much faster
than the LEE, so for cases with good agreement, the Rayleigh equation can be solved
easily with different combinations of the various source terms to gain insight into
sound generation mechanisms. Alternatively, the presence of substantial differences
between the two solution methods is indicative of significant refraction effects owing
to the spreading of the mean flow. It is well known that the effect of mean flow
spreading has the greatest impact on sound radiated at shallow angles. This effect is
reflected in the increased discrepancies between the LEE and Rayleigh solutions at
small inlet angles.

5.2. Source filtering and ‘radiating sources’

We now shift our focus from the sound fields to the shock-noise sources. Consider
a streamwise Fourier decomposition of the shock-noise source terms. Not all
components radiate sound, and it is useful to isolate those that do (as in Freund 2001).
Formally, a Fourier transform is applied to the sources (x → k) at a given frequency,
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Figure 18. Results for the Mj = 1.22 cold jet, m= 0; (a) composite plot showing (i) shock-cell
pressure in interior of jet, (ii) contours of streamwise mean velocity in jet shear layer, and
(iii) shock-noise (instantaneous pressure) outside of jet; Mj =1.22, St = 0.6, 0.75, 0.9, m= 0;
(b) real part of Fourier-transformed pressure, St = 0.6; (c) real part of Fourier-transformed
pressure, St = 0.75; (d) real part of Fourier-transformed pressure, St =0.9.

ω. For a parallel mean flow, only those components which satisfy the condition∣∣∣∣ωk
∣∣∣∣ > a∞, (5.1)

radiate sound. Then, if we filter out the non-radiating components and apply an
inverse Fourier transform, we obtain the ‘radiating sources’. The radiation condition
(equation (5.1)) is not strictly valid for spreading mean flows. For the cases of interest
in this study, the mean flows can be considered slowly spreading, and (5.1) should be
a good approximation. Nevertheless, we do not use the sharp cutoff filter implied by
(5.1); instead, we use a smooth filter function with a ‘safety factor’, �, included to
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Figure 19. Far-field pressure, Mj = 1.22, (a) m= 0, (b) m= 1, (c) m= 2. , St = 0.6 (LEE);
- - -, St = 0.75 (LEE); · , St = 0.9 (LEE); Symbols indicate Rayleigh equation solutions and
vertical lines indicate effective Mach angles which are discussed in § 5.4.

account for the approximate nature of (5.1),

ffilt = 0.5

{
1 + tanh

[
3

(
k

ω
− 1 − �−

)]}{
1 − tanh

[
3

(
k

ω
+ 1 + �+

)]}
, (5.2)

and we use �− = 1 for cold cases, �− = 0 for hot cases and �+ = 1 for all cases.
Let us take the axisymmetric St =0.75 mode for the cold Mj = 1.22 jet as an

illustrative example. Figure 20 shows the streamwise Fourier transform of the mass
source at r =0, Ŝρ(k, r =0), plotted against k/ω. Now, the radiating components are
contained within −1 � k/ω � 1 as indicated in the figure. Two peaks can be readily
identified. One of these is non-radiating and downstream-propagating whereas the
other produces shock-noise at upstream-directed angles. Note that the amplitude of
the non-radiating peak is larger than the amplitude of the shock-noise peak – this
indicates that the unfiltered source may give a misleading view of sound-generation.
An alternate perspective is gained by filtering out the non-radiating components as
shown in the figure and computing the inverse transform of the filtered spectrum.
Figure 21 shows contours of the unfiltered (figure 21a) and filtered (figure 21b) mass
source. There is a substantial qualitative difference between the two sources. Filtering
removes small-wavelength components and we are left with two ‘source regions’: the
initial shear layer and the core of the jet near the end of the potential core. Before
proceeding further, we should verify that the two sources produce the same sound
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Figure 21. Effect of filtering on shock-noise sources. Contours of real part of mass-source
for the Mj = 1.22 cold jet, St =0.75, m= 0 are shown; (a) unfiltered; (b) filtered.
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Figure 22. Far-field pressure computed with filtered sources, Mj =1.22, m=0. St = 0.6, 0.75,
0.9; Solutions with unfiltered sources (- - -) are also plotted, but they are nearly indistinguishable
from the filtered-source results.

fields. Figure 22 compares sound fields obtained by solving the LEE with filtered and
unfiltered sources for the Mj = 1.22 cold jet with St = 0.6, 0.75, 0.9 and m =0. For all
practical purposes, the sound fields are the same. Returning to the filtered source ‘field’
shown in figure 21, we note that the relative importance of the two source regions is
frequency-dependent. At higher frequencies, the shear-layer component increases in
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Ŝ ρ
(k

/ω
, r

 =
 0

)

k/ω
40 60 80 100 120 140

0

1

2

St = 0.6

0.75

0.9

p f
f

Inlet angle, θ (deg.)

Figure 23. Effect of second shock mode on source spectra and far-field sound for Mj = 1.22
cold jet, m= 0; (a) Source spectra for mass source along centreline, , first and second
shock-cell modes; - - -, first shock-cell mode only; (b) far-field pressure, , first and second
shock-cell modes; - - -, first shock-cell mode only.

significance whereas at lower frequencies the jet core component dominates. This jet
core component only appears for axisymmetric modes; sources for non-axisymmetric
modes contain only shear-layer components (see figures 25, 32).

5.2.1. Higher shock-cell modes

If the pressure mismatch of a supersonic jet is small, the jet shock-cell structure can
be modelled as the sum of zero-frequency linear eigenmodes of the mean flow. For the
cases considered in this study, only the first shock-cell mode radiates significant levels
of sound to the far field. Typically, we have checked this statement by computing
the local Mach angle (introduced below, equation (5.5)). We can also examine the
influence of the higher shock-cell modes on the source spectrum. Figure 23(a) shows
mass-source spectra for the Mj = 1.22 cold jet with m =0, St = 0.9. Spectra for two
cases are shown – a source including the first shock-cell mode only and a source
including the first two shock-cell modes. We see that when the second shock-cell mode
is included, two new peaks appear in the spectrum. The wavenumbers of these peaks,
however, lie outside of the range of radiating wavenumbers. Figure 23(b) compares
the far-field sound radiated by the first two shock modes with that radiated by the first
mode alone. There are minor differences between the two curves, but practically, the
effect of the second shock-cell mode on the sound is negligible. At higher frequencies,
the higher shock-cell modes will increase in significance. However, since a linear
instability wave representation of turbulence becomes increasingly suspect at higher
frequencies, we have not considered such cases here.

5.2.2. Coarse-grid computation

Note that large-amplitude small-wavelength disturbances will be generated by the
higher shock-cell modes placing additional strain on the numerical method. There
are two approaches which can remove this strain. The first is to ignore the higher
modes altogether; the second is to construct the full source and filter non-radiating
components. A more general methodology related to the second approach requires
the resolution of only the large-wavelength radiating components. Then, (relatively)
coarse grids could be used resulting in significant savings in computation time. The
procedure is as follows: compute the source spectra, filter out non-radiating compo-
nents, spectrally interpolate onto a coarser grid, and finally solve the LEE with the
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Figure 24. Far-field pressure from coarse-grid computations, Mj = 1.22,m= 0. (a) ,
coarse grid (Nx = 65) solutions with source filtering; - - -, full (Nx = 512) solutions with
unfiltered sources. (b) Coarse-grid results with unfiltered sources: , Nx = 65; - - -, Nx = 129.

filtered sources on a coarse grid. We have carried out a few coarse-grid computations
for the Mj = 1.22 cold, m = 0 case. Figure 24(a) compares the sound fields produced
by a ‘full’ computation which use 513 grid points in the streamwise direction and a
coarse computation which uses 65 grid points. There is a slight difference between
the solutions at the peaks, but overall, the agreement is very good. Figure 24(b)
compares coarse-grid solutions without source-filtering. For Nx = 129, the absence of
source filtering has little effect, but we see a dramatic degradation of the solution
with Nx = 65, and source-filtering is clearly required in order to produce an accurate
solution. It is clear that poorly resolved non-radiating components of the source can
corrupt the far-field sound.

5.2.3. Localized vs. distributed sources

Harper-Bourne & Fisher (1973) modelled shock-noise sources as an array of point
sources, whereas the measurements of Norum & Seiner (1982a) indicate that shock-
noise sources are spatially distributed. In this section, we argue that, for the cases
considered in this study, these viewpoints are not mutually exclusive; each may
be appropriate depending on the perspective that is adopted. The localized-source
model is reasonable if we consider the full source due to several shock-cell modes.
If only one shock-cell mode is considered, the sources are less localized; if only
the radiating components are used, the sources are decidedly distributed in space.
This is illustrated in figure 25 for the St =0.6, m =1, r-momentum source for the
Mj =1.22 cold case. The first three shock-cell modes have been included in the
construction of these sources. Figure 25(a) shows the ‘full’ source, and we can see
localized sources centred at points where the shock-cells interact with the jet shear
layer. As one moves downstream, the higher shock-cell modes decay away, and the
sources become somewhat more distributed. Figure 25(b) is the filtered source – again,
filtering has a dramatic effect on the source structure. It is likely that the rate of
decay of higher shock-cell modes is connected to the strength/presence of screech
tones. For cases where screech is suppressed, the higher-modes are expected to persist
farther downstream, and the Harper-Bourne & Fisher (1973) source representation
should improve.
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Figure 25. Localized vs. distributed sources, contours of r-momentum source magnitude for
the Mj =1.22 cold jet, St = 0.6, m= 1. Three shock-cell modes are included in the source.
(a) Unfiltered; (b) filtered.

5.3. Sound budget

The computed shock-noise is the superposition of sound radiated by each of the
sources in the governing equations. It is useful to decompose the sound into these
individual components. However, solving the full LEE for each component is a
computationally intensive task. As an alternative, simpler approach, we solve the
Rayleigh equation and obtain the sound radiated by sources in each of the primitive
variable equations.

As noted in Appendix B, the linearized Euler equations with a parallel base flow
and time harmonic, spatially compact sources can be written as an inhomogeneous
Rayleigh equation,

R{p̃} = −iω(1 + Uxκ)

(
S̃ρ

ρ
+

ρS̃s

(γ −1)

)
+ iωκS̃ux

+
1

r

d(rS̃ur
)

dr
− 2κ

1 + Uxκ

dUx

dr
S̃ur

+
im

r
S̃uθ

,

(5.3)

where R represents the compressible Rayleigh equation operator. This equation shows
that sound at a given frequency and azimuthal mode number, p̃, is produced by the
weighted sum of a mass source (S̃ρ), entropy source (S̃s), and three momentum sources

(S̃ux
, S̃ur

, S̃uθ
). The individual sound fields corresponding to these five sources make

up what we refer to as the ‘sound budget’. For example, the sound due to the mass
source is the solution to:

R{p̃} = −iω(1 + Uxκ)

(
S̃ρ

ρ

)
.

This budget is shown for the m =1, St =0.75 case in figure 26. The r-momentum
source is most significant though there are tangible contributions from the other
sources as well. Comparing the ‘r-momentum’ sound amplitude to the overall ampli-
tude (figure 27b), we see that there is good agreement in peak radiation angle at
all three frequencies, but at St =0.6, there is a large difference in amplitude. Also,
at St = 0.9, the total sound is less than the r-momentum sound. This indicates that
there must be destructive interference between the different sound components. The
mass source is the dominant source for the m =0 and m = 2 modes (figures 27a and
28a), however, the peak radiation angles do not match as well as they do for m =1,
particularly at m =2. Figure 28(b) shows the real part of the sound budget for m =2,
St = 0.9. Though the sound due to the mass source is ‘loudest’, there is substantial
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Figure 26. Sound budget, Mj = 1.22, m= 1, St = 0.75, (a) real and (b) imaginary components
of far-field pressure generated by: (thick), full source; , mass source; ,
x-momentum source; · , r-momentum source; · · ·, θ -momentum source; ×, entropy source.
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Figure 27. Far-field pressure for Mj = 1.22 cold jet, (a) m= 0 sound due to full source (lines)
and mass source (symbols), and (b) m= 1 sound due to full source (lines) and r-momentum
source (symbols); and �, St = 0.6; - - - and �, St = 0.75; · and �, St = 0.9.

interference from the other sources modifying the amplitude and directivity. Thus,
the individual azimuthal modes possess fairly distinct sound generation/radiation
mechanisms. The dominance of the mass and r-momentum sources identified here
will be used later in analysing general trends in the shock-noise data.

5.4. Effective Mach angle

The observed trends in the peak radiation angles can be explained with Tam &
Tanna’s (1982) ‘Mach wave’ model. We first define a ‘local source phase velocity’,

cs(x) =
ω

kt − ks

, (5.4)

where ω is the instability wave frequency, ks is the local shock-cell wavenumber, and
kt is the local instability wave wavenumber. A ‘local Mach angle’ readily follows,

θM (x) = cos−1(1/cs). (5.5)
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Figure 28. Far-field pressure for Mj = 1.22 cold jet m= 2, (a) sound due to full source
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Figure 29. Local Mach angle, Mj = 1.22,m= 0. St = 0.6; - - -, St = 0.75; · , St = 0.9.

The local Mach angle is plotted in figure 29 for the axisymmetric mode. A finite range
of ‘potential’ strong radiation angles exists for each frequency. As frequency increases,
the width of this range increases. This increase in width has little effect on the
actual sound fields since the linear instability waves also decay more quickly at higher
frequencies. However, in realistic turbulent flows, nonlinear effects which are neglected
here could allow these higher-frequency instabilities to persist farther downstream.
Then, we would expect stronger higher-frequency radiation at shallower angles as
indicated by figure 29. We define an ‘effective’ Mach angle, θM (x∗) by determining the
streamwise locations from which the strongest sound radiates, x∗. We use the results
from the sound budget analysis to define x∗ as the streamwise location where the
radially integrated filtered mass source is maximum for m =0, 2; the r-momentum
source is used for m =1. Applying this approach to the Mj =1.22 cold jet gives the
results indicated by vertical dashed lines in figure 19. The agreement is very good for
almost all cases. An exception is m =2, St = 0.9 which is not surprising since figure 28
shows that the peak radiation angles of sound generated by the mass source alone do
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Figure 30. Comparison of LEE-computed peak radiation angles (θmax) and Mach angles, (a)
Mj = 1.22 and (b) Mj =1.36. �, m= 0; �, m= 1, �, m= 2; ω1 = 4.04, ω2 = 5.05, ω3 = 6.06.

x∗ cph(x
∗)/Uj 2π/ks(x

∗) θM (x∗)
Mj m

1.22 0 3.97, 3.97, 3.92 0.79, 0.81, 0.82 0.76, 0.76, 0.76 30.7, 61.6, 77.5
1.22 1 4.08, 3.34, 2.97 0.75, 0.76, 0.78 0.76, 0.79, 0.80 36.1, 69.4, 85.0
1.22 2 4.23, 3.39, 2.13 0.73, 0.74, 0.73 0.75, 0.79, 0.83 37.1, 71.3, 91.4
1.36 0 4.66, 4.13, 3.6 0.79, 0.80, 0.80 1.01, 1.04, 1.06 61.1, 81.1, 93.5
1.36 1 5.40, 4.39, 3.87 0.75, 0.76, 0.77 0.97, 1.02, 1.06 60.8, 83.2, 95.2
1.36 2 4.92, 2.81, 2.81 0.73, 0.72, 0.74 1.00, 1.09, 1.09 65.4, 91.1, 99.9

Table 2. Effective Mach angle parameters for the cold jets. The three numbers in each table
entry correspond to the frequencies (ω1, ω2, ω3) specified in the caption for figure 30; cph = ω/kt .

not match the peak radiation angles of the overall sound for this case. Comparison
of ‘predicted’ Mach angles with the computations for the two cold cases are collected
in figure 30. The agreement is very good for almost all cases except m =2 at higher
frequencies.

The parameters used to determine the effective Mach angles are given in table 2.
Interpreting x∗ as the streamwise location at which the dominant sound is generated,
two trends are evident. As frequency increases, the location of sound generation tends
to move upstream – higher-frequency instability waves tend to peak closer to the
nozzle. The second trend is that values for x∗ are larger for the higher-Mach-number
case. At higher Mach number, the potential core length increases, and instability
waves peak farther downstream while the shock-cell structure decays at a slower rate.
The other parameters in table 2 will be discussed later when we compare Tam’s (1987)
model with our computations.

5.5. Peak sound amplitudes

The reduction in sound amplitude as frequency increases, correlates well with the
corresponding decrease in instability wave growth for most of the cases (figure 31).
Such a correlation does not exist when comparing the amplitudes across different
azimuthal modes. For example, the instability wave energies for the Mj = 1.36, m =2
case are comparable to, or greater than, the Mj = 1.36, m =0 instability wave energies;
however, the m = 0 sound amplitudes are larger. A similar trend is observed when
comparing the Mj = 1.22, m =0 and m =1 cases. This behaviour can be understood
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Figure 31. Comparison of peak sound amplitudes and peak instability wave kinetic energies
for the (a) Mj = 1.22 and (b) Mj =1.36 cold jets; �, ω = 4.04; �, ω = 5.05; �, ω = 6.06.
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Figure 32. Contours of the real part of the dominant (filtered) source for the Mj = 1.22 cold
jet, St = 0.6. (a) m= 0, mass source (max = 12.0); (b) m= 1, r-momentum source (max =6.2).
Each source has been normalized by its maximum amplitude which is given above.

by examining the radial structure of the instability wave. As discussed earlier,
the axisymmetric instability waves tend to penetrate the jet core whereas higher
modes tend to stay localized in the shear layer. Figure 32 shows the mass and r-
momentum shock-noise source amplitudes for the m =0, St =0.6 and m =1, St = 0.6
cases, respectively. The source amplitude and source volume for m =0 is tangibly
larger despite the larger growth rate of the m = 1 instability wave.

There is little correlation between the sound and instability wave amplitudes for
the m = 2, Mj = 1.36 case. For this case, there is significant interference between the
sources. In fact, the sound radiated by the r-momentum source is dominant for this
case due, in part, to the cancellation of mass-source sound by the other sources. Thus,
the details of the source structure are important. In the next section, we will see that
source interference is also closely tied to the effect of heating on shock-noise.

5.6. On the effect of heating on shock-noise

The hot Mj = 1.22 jet shows trends which are similar to the unheated case (figure 33).
A notable difference is the elevated sound levels for the hot axisymmetric modes.
In order to gain a clearer view of the effect of heating, we have computed a third
Mj = 1.22 case with St = 0.6 and Tj/T∞ = 2.7. Figure 34 compares peak sound levels
with peak modified instability wave energies for the three Mj = 1.22, St = 0.6 cases.
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Figure 34. Peak sound level vs. peak modified instability wave energy for Mj = 1.22,
St = 0.6, Tj/T∞ = �, 0.77; �, 1.7; �, 2.7.

There is a distinct amplification of the axisymmetric mode as the jet temperature is
increased, while the higher modes are relatively unaffected. In general, the increased
spreading rates of the hot jet mean flows result in instability waves interacting more
vigorously with the (stronger) shock-cells closer to the nozzle. This leads to a general
increase in source amplitudes; however, we do not see a general increase in sound
amplitudes. We will use solutions to the Lilley–Goldstein equation to understand why
only the axisymmetric modes show a strong increase in sound level as jet temperature
is increased.

Goldstein (2001) showed that the inviscid nonlinear disturbance equations with
a parallel base flow could be reduced to the third-order convective wave equation
(Goldstein 1976) in terms of a nonlinear pressure variable, π ≡ (p′/P )1/γ − 1:

Lπ =
D0

Dt

∂fj

∂xj

− 2
∂U1

∂xj

∂fj

∂x1

, (5.6a)
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Figure 35. Far-field pressure, Mj = 1.22, (a) hot, m= 0 and (b) cold, m= 1. , St =0.6
(LEE); - - -, St = 0.9 (LEE); symbols indicate LG equation solutions.

fi = − ∂

∂xj

(1 + π)u′
iu

′
j − (γ − 1)T ′ ∂π

∂xi

, (5.6b)

where L is the third-order convective wave equation operator. We now substitute the
variable decomposition (3.2) into (5.6) and expand the expression for π to obtain

Lp′ =
D0

Dt

∂fj

∂xj

− 2
∂U1

∂xj

∂fj

∂x1

, (5.7a)

fi = − ∂

∂xj

[
u

(t)
i u

(s)
j + u

(s)
i u
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j

]
− (γ − 1)

[
T (t) ∂p(s)

∂xi

+ T (s) ∂p(t)

∂xi

]
. (5.7b)

We have neglected a term, L(p(t)p(s)). Fourier transforming these equations in x

and t leads to the inhomogeneous Rayleigh equation, which we solve numerically
for comparison with LEE results. This form of the equations is useful owing to
the separation of fi into what we term ‘momentum’ and ‘thermodynamic’ sources.
Before using the Lilley–Goldstein (LG) equation, we should demonstrate that it is a
reasonable approximation to the full problem. Figure 35 shows comparisons of the
LEE and LG solutions for the Mj =1.22, m =0 hot and Mj = 1.22, m =1 cold cases.
While there is tangible error for the lower-frequency cold case, the LG approximation
is adequate. We also note the strong downstream radiation for the LEE solution
shown in figure 35(a). This sound is due to Mach waves associated with instability
waves excited by the shock-noise sources. However, it is expected that mixing noise
will be dominant at these angles.

We now examine the relative importance of the momentum and thermodynamic
sources in the LG equation for the cold and heated Mj =1.22 jets. Figure 36 shows
LG equation solutions for m =0, 1. For all cases, the momentum source is clearly
the most significant. Somewhat surprisingly, heating does not seem to increase the
importance of the thermodynamic terms when the temperature ratio is increased
to 1.7. However, when the temperature ratio is increased to 2.7, there is a clear
increase in the ‘thermodynamic sound’. The most significant trend in the figure
is connected to interference between the momentum and thermodynamic sound
fields. For the cold axisymmetric mode, there is destructive interference between
the two fields. However, as the temperature ratio is increased, the interference
becomes increasingly constructive. The opposite trend is observed for m = 1. The cold
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Figure 36. LG equation solutions for far-field pressure, Mj = 1.22, St = 0.6, 0.9, (a) cold,
m= 0, b cold, m= 1, (c) hot, Tj/T∞ = 1.7, m= 0, (d) hot, Tj/T∞ =1.7, m= 1, (e) Tj/T∞ = 2.7,
m= 0, (f ) Tj/T∞ =2.7, m= 1. Sound due to: , full source; - - - , momentum source; · ,
thermodynamic source.

case shows constructive interference, but heating results in increasingly destructive
interference. These trends provide an explanation for why the axisymmetric sound
levels are elevated as the jet is heated, but the higher modes are not.

The source fields (figure 37) do not clearly indicate the degree or type of interference
that will occur. However, we can see that the structure of the thermodynamic and
momentum sources are similar for m =1, whereas they are quite different for the
axisymmetric modes. So, it is to be expected that the trends in interference will be
different as observed above.
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Figure 37. LG equation source fields for, Mj = 1.22, Tj/T∞ = 1.7, St = 0.6, (a) momentum,
m= 0; (b) thermodynamic, m= 0; (c) momentum, m= 1; (d) thermodynamic, m= 1. Note:
different contour levels are used for each plot, the maximum levels are: (a) 3000, (b) 540,
(c) 1000, (d) 660.

5.7. Comparisons with experimental measurements

We now move to comparisons with experiment. The far-field pressure at a given
azimuthal mode number and frequency is denoted, pm,ω. Then, the ‘total’ far-field
sound at a given frequency is

pff,ω =

2∑
m=0

αm,ωcm|pm,ω|2

where c0 = 1, cm =2 for m > 0, and αm,ω is a normalization factor which specifies
the spectral behaviour of instability waves at the nozzle. For simplicity, we assume
a ‘white noise’ spectrum, i.e. each instability wave at each frequency and azimuthal
mode is assumed to have the same integrated kinetic energy at the nozzle. This
removes the (m, ω) dependence of αm,ω; we set its numerical value through a simple
fit to the cold Mj = 1.22 data – the peak value of the computed St = 0.75 data is set
to the peak measured value. The same value for αm,ω is used for the cold and hot
cases.

Since our computations correspond to a few discrete frequencies, conventional
comparisons with experimental spectra are not possible. Instead, we take two
approaches: (i) extract the relevant frequencies from the measured spectra and
compare the directivity and (ii) interpolate the numerical results to intermediate
frequencies and construct ‘model spectra’. (These model spectra are constructed by
first assuming that the dependence of the computed far-field sound on inlet angle
at each frequency is a Gaussian function whose half-width is obtained from a least-
squares fit. Intermediate frequency directivities are constructed as Gaussians with
half-widths and amplitudes interpolated from the fits to the computed results. The
model spectra are based on these model directivities.) The first approach clearly
illustrates the elevation of the sound amplitudes due to shock-noise at small inlet
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Figure 38. Comparison of sound pressure levels obtained from an experiment of Viswanathan
(unpublished) (symbols) and computation (lines), Mj = 1.22, (a) cold and (b) Tj/T∞ = 1.7. - - -
and ◦, St = 0.6; - - - and �, St = 0.75; · and �, St = 0.9.
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Figure 39. Comparison of sound pressure levels obtained from experiment of Viswanathan
( ) and computation (- - -), Mj = 1.22, (a) cold and (b) Tj/T∞ = 1.7. , St = 0.6; - - -,
St = 0.75; · , St = 0.9.

angles whereas the latter is the more traditional test for evaluating predictive models
such as Tam (1987).

The comparisons between computation and experiment for the cold and hot
Mj =1.22 jets are shown in figures 38 and 39. The level of agreement is fair –
the computations seem to reproduce the basic trends near the measured shock-
noise peaks. However, in both cases, higher frequency sound at shallow angles is
‘missing’ from the computations. There are some differences in the amplitudes as
well, but these are dependent on the choice of normalization. Since there are few
experimental data on the distribution of energy across frequencies and azimuthal
modes in turbulent jets, errors associated with the simple normalization that we have
chosen should be expected. A more serious issue is the aforementioned ‘missing’ sound.
It is possible that this discrepancy is due to ‘higher-order’ effects that were neglected
in deriving the model problem. Specifically, nonlinear effects and the modification of
instabilities by the early shock structure could alter the higher-frequency instabilities
and produce stronger sound at shallower angles. Also, the peak inlet angles for the
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x∗ cph(x
∗)/Uj 2π/ks(x

∗) θM (x∗)
m

0 3.92, 3.60, 3.60 0.76, 0.77, 0.79 0.76, 0.78, 0.78 56.1, 74.4, 84.2
1 3.71, 3.34, 2.97 0.72, 0.74, 0.75 0.77, 0.79, 0.81 61.1, 78.0, 88.4
2 3.87, 2.66, 2.24 0.69, 0.70, 0.71 0.76, 0.82, 0.83 62.4, 82.8, 92.6

Table 3. Effective Mach angle parameters for the Mj = 1.22 hot jet. The three numbers in
each table entry correspond to the frequencies St = 0.6, 0.75, 0.9; cph = ω/kt .

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1.0

  

St = 0.6

0.9
|p|

x/D

Figure 40. Pressure magnitude at , r/D = 2.0 and - - -, r/D = 3.1; Mj = 1.22 cold,
m = 1.

hot case are over-predicted. Possible sources for this difference include discrepancies
between computed and experimental mean flow spreading rates and the choice of
turbulent Reynolds number for the PSE computations. Another possible source of
error is the representation of ‘moderate-frequency’ turbulent disturbances as individual
coherent instability waves. It is likely that less-coherent disturbances driven by some
combination of nonlinear and non-modal effects will become more significant at
higher frequencies. Unfortunately, since turbulent shear-layer dynamics are not well-
understood, it is not possible at this time to clearly assess at what frequencies such
effects become important.

It should be noted that Tam’s (1987) model does not exhibit the high-frequency
shallow-angle error found in our computations. The model assumes that the near-field
pressure at a given frequency takes the form of a wave modulated by a Gaussian
envelope. The wavelength of the pressure is based on models of the instability wave
convective velocity (taken to be 0.7Uj ) and the shock-cell wavelength (an empirical
formula gives λ= 2π/ks =0.66 for the cold Mj = 1.22 jet). Both of these values are
smaller than those found from our computations (tables 2 and 3), and the the model
Mach angles for St = 0.6 and St = 0.9 are ∼ 30◦ and ∼ 10◦ less than the computed
values, respectively. There is also a significant difference in the wave envelope half-
width. The model assumes that the half-width scales with frequency as ∼ 1/ω whereas
the computational results indicate that envelope width at St = 0.9 is comparable
to, if not larger than, the envelope width at St = 0.6 (figure 40). As a result, the
model directivities at higher frequencies span a broader range of angles than the
computed directivities. In general, we expect the models of Harper-Bourne & Fisher
(1973) and Tam (1987) to provide predictions of sound spectra which are better than
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those obtained from the present approach. There are numerous parameters in our
model (e.g. initial mean flow thickness, eddy viscosity) which could presumably be
‘tuned’ to provide better agreement with experiment. However, our primary interest
has been in analysing sound generation trends and mechanisms, not the development
of predictive capability, so, we have not pursued such an approach.

6. Concluding remarks
The ultimate goal of most aeroacoustics research is the reduction of undesired

sound. Most attempts at jet noise control in recent years have followed a trial-and-
error approach – modify the nozzle in some manner, then determine how the sound
field is modified. A more direct approach is desirable, and improvements in both
numerical and experimental techniques point toward the more efficient development
of noise control methods. There are two distinct problems which must be solved. One
of these is to understand how modification of the nozzle affects the jet turbulence.
Because of limitations of computational power, for the time being this problem
is best attacked experimentally. The other problem is to obtain a general physical
understanding of how modifications to the turbulence influence the jet noise.

A principal goal of the present study has been to connect properties of the
large-scale structures, acoustic sources and sound fields – thus attacking the second
problem mentioned above. An array of computational tools has been developed
to generate and analyse the various components of the instability wave/shock-cell
interaction problem. We examined shock-noise source spectra and applied a filter to
isolate the radiating components. Unfiltered sources containing several shock modes
showed spatial localization lending support to the point-source modelling assumption
of Harper-Bourne & Fisher (1973). Filtered sources were spatially distributed in
agreement with the experimental study of Norum & Seiner (1982a). It was shown that
solutions to an inhomogeneous Rayleigh equation (obtained by neglecting the effect
of mean flow spreading on sound propagation) provided excellent approximations
to the ‘full’ problem. We then examined the importance of individual source terms
in the Rayleigh equation. We found that the mass source was dominant for the
axisymmetric and m =2 modes whereas the radial-momentum source was dominant
for the m =1 mode. We also found that interference between the different sources was
significant for m = 2. These results suggest that there are significant differences in the
physical sound-generation mechanisms for the azimuthal modes. The Tam & Tanna
(1982) Mach angle model was used to identify a range of angles at which Mach
waves could ‘potentially’ radiate. The shock-noise sources were then used to define
an effective Mach angle which provided a prediction of the peak radiation angle. For
almost all of the cases considered, the predictions showed good agreement with the
computed results. We also showed that there was a consistent correlation between
peak instability wave and shock-noise amplitudes (for most cases) and concluded
that the radial structure of the axisymmetric modes (specifically its penetration into
the jet core) leads to ‘more efficient’ sound generation than the higher modes. This
increased efficiency was amplified when the jet temperature was increased. Solutions
to a Lilley–Goldstein equation showed that sound from thermodynamic sources
increased in significance as the jet was heated, and constructive interference between
the thermodynamic sources and momentum sources led to a substantial increase in
sound levels for the axisymmetric modes. However, higher modes showed destructive
interference between sound radiated by momentum and thermodynamic sources which
resulted in sound fields which were little-affected by heating.
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In our approach to this problem, we have applied numerical tools of low or
moderate expense to a model problem formulated by Tam (1987). An important
advantage of this formulation is that it results in an unambiguous definition of
the sound sources which, in turn, allows for a more detailed examination of sound
generation than currently allowed by costlier approaches such as LES and DNS.
In these ‘direct’ approaches, there is a real difficulty in extracting the physical
sound-generation mechanisms from complex three-dimensional flow fields. It is hoped
that the current study and future direct, less-approximate, numerical solutions will
complement each other. The results obtained here can provide an analytical framework
for understanding the simulation results, and full, accurate simulations can provide
insight into the validity of the modelling assumptions used in this study.

Finally, we mention two outstanding issues whose study would (hopefully) lead
to a better understanding of shock-noise. First, comparisons with experiments show
that higher-frequency sound at shallow angles is ‘missing’ from our computations.
Is this due to the linear instability wave representation of turbulence, or are other
modelling assumptions responsible? Experimental measurements (of velocity, ideally)
decomposed into azimuthal modes and frequencies (as in Suzuki & Colonius 2006)
would provide means for assessing models such as the instability waves used here
while also giving a clearer picture of turbulent shear-layer dynamics. The second issue
centres on the difference between ‘real’ commercial engine exhausts and the single-
stream jets considered here. Reduction of shock-noise requires the consideration
of coannular jets with flight streams (such as those studied experimentally by
Viswanathan 2004). The application of the methods used in this work to realistic
multiple-stream jets presents a number of significant computational and analytical
challenges. The present study provides a necessary first step towards analysis of these
realistic configurations.

We would like to thank Dr K. Viswanathan for providing experimental results and
Dr L. Cheung for providing his PSE code and generously lending assistance with the
PSE calculations. This study was supported by Boeing. P. K. R. also received support
from an NDSEG fellowship.

Appendix A. Numerical method for linearized Euler equations
Here, we present a few of the numerical details omitted from § 3.5.

A.1. Spectral filter

The exponential filter function (Majda et al. 1978; Gottlieb & Hesthaven 2001) is:

σj = exp

[
− ln(εM )

(
j

N

)2p]
, (A 1)

where εM is machine zero (usually taken as 1.0 × 1016), N is the number of grid
points, j = 1, . . . , N , and 2p is the filter order. We used p = 15 for all shock-noise
computations (both directions and subdomains) except for cases with azimuthal mode
number m =2 for which p = 10 was used.

A.2. Damping layers

The damping layers applied at the inflow, outflow and top of the computational
domain use cubic damping functions (Manning 1999). For example, at the outflow,
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the governing equations are modified to be:

∂Qi

∂t
= RHSi +d(x)Qi, (A 2)

with damping function d(x) defined as:

d(x) =

⎧⎨
⎩d0

(
x − x0

xf − x0

)3

, x > x0,

0, x < x0,

(A 3)

where d0 is the ‘strength’ of the damping, x0 is the starting point of the layer, and
xf is the outflow boundary. The sizes of the damping layers used in the Mj = 1.22
shock-noise computations presented earlier are shown in figure 3. At higher Mach
number (Mj = 1.36) the outflow sponge began at x =11 rather than x =9. At the
inflow and top layers, the sponge strength for all cases was d0 = 4; at the outflow we
used d0 =6.

A.3. Grid mappings

As mentioned earlier, the computational grids are the Gauss–Lobatto points,

zj = cos

(
jπ

N

)
(0 � j � N). (A 4)

The Bayliss & Turkel (1992) mapping used for the radial direction in the inner sub-
domain is:

r =

(
1 − α2 − 1

α1

tan[λ(z − z0)]

)
L/2, (A 5)

λ =
tan−1[α1(1 − α2)]

1 − z0

, (A 6)

z0 =
κ − 1

κ + 1
, (A 7)

κ =
tan−1[α1(1 + α2)]

tan−1[α1(1 − α2)]
, (A 8)

where L is the size of the physical domain. This mapping clusters grid points in
the shear layer about r∗ =(1 − α2)L/2, and α1 sets the amount of clustering. The
Kosloff & Tal-ezer (1993) mapping used for the outer subdomain radial mapping and
streamwise mapping is:

x =

(
1 +

sin−1(βz)

sin−1(β)

)
L/2. (A 9)

This mapping reduces the Gauss–Lobatto boundary clustering; as β increases, the grid
distribution becomes more uniform, but the Chebyshev approximation error increases
as well. Hesthaven, Dinesen & Lynov (1999) recommend setting β = cos(0.5) to
balance these competing effects, and we follow their recommendation here. Unless
noted otherwise, all shock-noise computations in this work used: 181 grid points in
the inner subdomain with α1 = 4.0, α2 = 0.5; 65 grid points in the outer subdomain;
and 513 grid points in the streamwise direction. The domain sizes are shown in
figure 3.

Near-boundary clustering in the streamwise direction is a tangible deficiency of
the present method. Though we have not pursued it here, adding subdomains in the
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streamwise direction would potentially allow for significant increases in computational
efficiency and flexibility.

Finally, we note that the time-step was �t = 0.0004 for cases with m =0, 1 and
�t = 0.0003 for m = 2.

Appendix B. The compressible Rayleigh equation
This Appendix presents the compressible Rayleigh equation and describes how

numerical solutions were obtained. We focus on the computation of the far-field
sound. Rayleigh equation solutions were used in this study for several tasks including:
validation of the LEE code; assessing the effect of mean flow spreading on shock-noise
radiation; and assessing the significance of individual shock-noise source terms.

B.1. Formulation

We begin with the inhomogeneous linearized Euler equations in cylindrical coordinates
and assume a parallel base flow, Ux(r). Taking a Fourier series expansion in the
azimuthal direction, and applying Fourier transforms in time and the streamwise
direction,

p =

∞∑
m=−∞

p̂m eimφ, (B 1a)

p̃(k, r, ω, m) =

∫ ∞

−∞

∫ ∞

−∞
p̂m(x, r, t) e−i(kx+ωt) dx dt, (B 1b)

we can combine the resulting equations into the inhomogeneous compressible
Rayleigh equation:

n2

r

d

dr

(
r

n2
a2 dp̃

dr

)
+ ω2

[
n2 − a2

(
κ2 +

m2

r2ω2

)]
p̃ = S̃(k, r, m, ω), (B 2)

where κ ≡ k/ω, n ≡ 1 + Uxκ , and a is the mean speed of sound. First, consider
the solution outside of the shear layer. If Ux → 0, a → 1, and S̃ → 0, (B 2) reduces to
Bessel’s equation. Applying a radiation condition then gives the following far-field
solution:

p̃outer = C(κ)H (2)
m (

√
1 − κ2ωr), (B 3)

where C is a factor that depends on the inner solution and H (2)
m is the Hankel

function of the second kind. In order to return to physical space, an inverse
Fourier transform in k must be applied to p̃. As z → ∞, H (2)

m (z) ∼
√

(2/πz) exp
(−i(z − (1/2) mπ − π/4)). Now if we introduce spherical coordinates (R, ψ, φ) and
allow ωR → ∞, the inverse Fourier integral can be evaluated by the method of
stationary phase with the final result (in the frequency domain):

κ = −cos(ψ), (B 4a)

pff,ω ∼ iC(κ = −cos(ψ))

πR
e−iωR. (B 4b)

Rather than solving (B 2) with finite source terms, we first solve for the Green’s
function, G̃(r; r0), defined by

n2

r

d

dr

(
r

n2
a2 dG̃(r; r0)

dr

)
+ ω2

[
n2 − a2

(
κ2 +

m2

r2ω2

)]
G̃(r; r0) =

δ(r − r0)

r
. (B 5)
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Having solved for G̃, the pressure is found from a simple convolution integral:

p̃(r) =

∫ ∞

0

G̃(r; r0)S̃(r0)r0 dr0. (B 6)

This solution outside of the shear layer can be used with (B 3) to obtain C(κ). Then,
the far-field sound is found from (B 4).

B.2. Numerical method

In the context of linear stability theory, the Rayleigh equation is set up as an
eigenvalue problem which is solved by the shooting method. In our case, what would
be the eigenvalue, κ , is known to vary continuously between −1 and 1 as cos(ψ).
With this understood, we can still adopt the shooting method while dropping the
eigenvalue aspect and adding modifications to account for the singular nature of
(B 5).

The inner and outer solutions with which to start the shooting method are the
Bessel function of the first kind and the Hankel function of the second kind. The
outer and inner solution are computed up to the source location, r0. At the source
locations, jump conditions based on (B 5) are applied:

G̃+ − G̃− = 0, (B 7a)

dG̃+

dr
− dG̃−

dr
= r0a

2(r0). (B 7b)

After the outer solution is scaled based on (B 7), the method of stationary phase can
be applied as outlined in the previous section to obtain the far-field Green’s function.
Typically, the computation of (B 6) requires the solution of (B 5) for several values of
r0. However, if we use the reciprocity relation,

G̃(r0; rs)

n(r0)2
=

G̃(rs; r0)

n(rs)2
, (B 8)

and take rs as a point outside the shear layer where mean flow gradients are small,
we need only one Rayleigh equation solution to obtain the far-field sound at a given
angle. Specifically, taking rs to be well outside the shear layer, computing G̃(r, rs)
gives G̃(rs, r) which can be inserted into (B 6) to obtain p̃(rs) which can then be
extended to the far field. This Green’s function solution is similar to the ‘separation
of variables’ solution for the far-field Green’s function given by Tam & Auriault
(1998). Near-field solutions for the Green’s function are discussed by Agarwal, Morris
& Mani (2004) within the broader context of instability-wave suppression in linear
aeroacoustic computations.
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